Rapid killing of Capnocytophaga canimorsus and Capnocytophaga cynodegmi by human whole blood and serum is mediated via the complement system
نویسندگان
چکیده
PURPOSE Capnocytophaga canimorsus (Cani) and Capnocytophaga cynodegmi (Cyno) are found in the oral cavities of dogs and cats. They can be transmitted to humans via licks or bites and cause wound infections as well as severe systemic infections. Cani is considered to be more pathogenic than Cyno, but the pathophysiological mechanisms are not elucidated. Cani has been suggested to be resistant to serum bactericidal effects. Thus, we hypothesized that the more invasive Cani would exhibit a higher degree of serum-resistance than the less pathogenic Cyno. METHODS Whole blood and serum bactericidal assays were performed against Cani- (n = 8) and Cyno-strains (n = 15) isolated from blood and wound-specimens, respectively. Analysis of complement-function was performed by heat-inactivation, EGTA-treatment and by using C1q-depleted serum. Serum and whole blood were collected from healthy individuals and from patients (n = 3) with a history of sepsis caused by Cani. RESULTS Both Cani and Cyno were equally susceptible to human whole blood and serum. Cani was preferentially killed by the classical pathway of the complement-system whereas Cyno was killed by a partly different mechanism. Serum from 2/3 Cani-infected patients were deficient in MBL-activity but still exhibited the same killing effect as control sera. CONCLUSION Both Cani and Cyno were readily killed by human whole blood and serum in a complement-dependent way. Thus, it is not likely that serum bactericidal capacity is the key determinant for the clinical outcome in Cani or Cyno-infections.
منابع مشابه
Draft Genome Sequences of Three Capnocytophaga cynodegmi Strains Isolated from the Oral Cavity of Healthy Dogs
Here, we present the draft genome sequences of three strains of Capnocytophaga cynodegmi. In contrast to the very close relationship among them, C. cynodegmi and Capnocytophaga canimorsus differ dramatically in terms of virulence in humans. Comparative genomics provided some understanding on how Capnocytophaga species may switch from being dog commensals to human pathogens.
متن کاملResistance of Capnocytophaga canimorsus to killing by human complement and polymorphonuclear leukocytes.
Capnocytophaga canimorsus is a bacterium of the canine oral flora known since 1976 to cause rare but severe septicemia and peripheral gangrene in patients that have been in contact with a dog. It was recently shown that these bacteria do not elicit an inflammatory response (H. Shin, M. Mally, M. Kuhn, C. Paroz, and G. R. Cornelis, J. Infect. Dis. 195:375-386, 2007). Here, we analyze their sensi...
متن کاملWhole genome sequencing identifies a novel species of the genus Capnocytophaga isolated from dog and cat bite wounds in humans
C. canimorsus and C. cynodegmi are dog and cat commensals which can be transmitted to humans via bites or scratches and can cause sepsis, meningitis, endocarditis, and eye- or wound infections. Recently an additional Capnocytophaga species was identified as part of the oral flora of healthy dogs and was given the name "C. canis". We previously identified a Capnocytophaga isolate that could not ...
متن کاملEvidence for a LOS and a capsular polysaccharide in Capnocytophaga canimorsus
Capnocytophaga canimorsus is a dog's and cat's oral commensal which can cause fatal human infections upon bites or scratches. Infections mainly start with flu-like symptoms but can rapidly evolve in fatal septicaemia with a mortality as high as 40%. Here we present the discovery of a polysaccharide capsule (CPS) at the surface of C. canimorsus 5 (Cc5), a strain isolated from a fulminant septica...
متن کاملDraft Genome Sequences of Three Capnocytophaga canimorsus Strains Isolated from Septic Patients
Capnocytophaga canimorsus is a bacterium from the normal oral flora of dogs and cats that causes rare generalized infections in humans. In an attempt to determine whether infections could be caused by a subset of strains and to identify pathogenicity factors, we sequenced the genomes of three strains isolated from human infections.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015